Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Poult Sci ; 102(12): 103140, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37844529

RESUMEN

In this study, 2 types of drinking water were provided to broiler chicks to evaluate the relationship between the bacterial load of drinking water and cecal microbiota. One type of drinking water was untreated, while the other type was daily treated with sodium dichlorocyanurate (50 mg/L). A total of 240 broiler chicks were divided into 2 groups based on their initial body weight. There were 6 replicates in each group, and each replicate cage contained 20 birds. Each cage was assigned to a different floor of the battery cage. On the final day, water samples were collected from each replicate cage at the opening of the drinking cup height, and one bird was selected from each replicate cage to obtain cecal content samples for measuring microbiota composition using the 16S rRNA technique. We found that drinking water treated with sodium dichlorocyanurate significantly reduced the richness and diversity of microbiota and diminished/disappeared most gram-negative bacteria. Broiler chicks that consumed chlorinated drinking water exhibited changes in the composition of cecal microbiota, with Alistipes serving as the marker species in the cecal content of broiler chicks that consumed untreated water, whereas AF12 served as the marker species in the cecal content of broiler chicks that consumed chlorinated drinking water. Functional prediction using the MetaCyc database and species composition analysis of metabolic pathways showed that changes in 7 metabolic pathways were related to the abundance of Providencia. Therefore, we concluded that chlorinated drinking water reduced the bacterial load in drinking water, thereby altering the cecal microbiota composition and regulating the metabolic activity of broiler chicks.


Asunto(s)
Agua Potable , Microbiota , Animales , Pollos/fisiología , ARN Ribosómico 16S/genética , Ciego/microbiología , Sodio
2.
Poult Sci ; 102(7): 102707, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37216884

RESUMEN

Environmental exposures during early life are important for animals' intestinal microbiota composition and their production performance. This experiment investigated the growth performance, hematology parameters, jejunal morphology, and cecal microbiota of broiler chicks as affected by exogenous factors from the aspects of drinking water quality and dietary manipulation. A total of 480-day-old broiler chicks (Arbor acre; 41.59 ± 0.88 g) were randomly assigned into 4 groups (CON, HWGM, CA, CAHWGM). Each group had 6 replicates with 20 birds per replicate. Broiler chicks in CON group were fed with basal diet and drank normal drinking water; in HWGM group were fed with basal diet supplemented with 1.5g/kg herbal extract blend (hops, grape seed, and wheat germ) and drank normal drinking water; in CA group were fed with basal diet and drank sodium dichlorocyanurate (50 mg/L) treated-drinking water; in CAHWGM group were fed with basal diet supplemented with 1.5 g/kg herbal extract blend and drank chlorinated drinking water. The experimental period was 42 d. We found that broiler chicks drank chlorinated drinking water led to an increase in body weight gain and feed efficiency during d 22 to 42 and 1 to 42, as well as a decrease in cecal Dysgonomonas and Providencia abundance. Dietary supplementation of herbal extract blend increased cecal Lactobacillus and Enterococcus abundance, whereas decreased Dysgonomonas abundance. Moreover, we observed that cecal Dysgonomonas abundance synergistically decreased by treating drinking water with sodium dichlorocyanurate and supplementing herbal extract blend to the diet. Therefore, results obtained in this study indicated that providing chlorinated drinking water is an effective strategy to improve the growth performance of broiler chicks by regulating intestinal microbiota. Additionally, dietary supplementation of herbal extract blend alone or combined with chlorinated drinking water is able to regulate cecal microbiota.


Asunto(s)
Suplementos Dietéticos , Agua Potable , Microbiota , Animales , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Pollos/fisiología , Dieta/veterinaria , Suplementos Dietéticos/análisis , Desinfección , Sodio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA